Cloud Native Apps and Security: The Case for CoreOS Rkt and Xen

Jonathan MathewsPublic

Rkt and Xen

CoreOS’s rkt started at the beginning of 2014 as a security-focused alternative to Docker. The project aimed to create a signature verification of cloud-native apps by default; the intention was to guarantee the integrity of the apps. It also stepped away from the central-daemon design of Docker, which requires root privileges for all operations. By contrast, the rkt process is short-lived, limiting the chances of being exploited, and some of rkt commands can be executed as unprivileged user.

The project has come a long way since it was conceived. It is stable, fully featured, and it supports a variety of ways to fetch and start cloud-native apps with security being top of mind. For example, it can download apps from the Docker registry and use virtualization to run them.

Rkt champions open standards and supports the Open Container Initiative image and runtime specifications. A couple of months ago, it was accepted into the Cloud Native Computing Foundation, becoming a member of the same family as Kubernetes, the popular container orchestration service. Rkt already has excellent support for Kubernetes, and it will strengthen further now that they live under the same roof.

Why Rkt Works So Well: It’s The Architecture

The primary benefit of rkt is that it is versatile. Its versatility stems from its architecture, which is based on multiple stages of execution: stage0, stage1, and stage2:

  • Stage0 is responsible for readying the images and is implemented by the rkt executable.
  • Stage1 is in charge of creating isolated environments to run cloud-native apps. Stage1s are distributed in Application Container Image format (also known as ACI), which is a tarball containing a rootfs and a JSON manifest. It is the same format used for cloud-native apps.
  • Stage2 is the environment in which the applications actually run.

Taking a lesson from Kubernetes, the basic execution unit of rkt is a pod: a small set of cloud-native apps to be run in a shared context. Typically, a pod is just a couple of apps, for example, a server app and a log parsing app. The log parsing application needs access to the logs of the other app; hence, the two apps share filesystem access.

Full Article